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Abstract 

To attest is to affirm to be correct, true, or genuine.  Applied to software or executable 

code, attestation is the ability to affirm that the code actually being executed is the code 

that is expected, unmodified in any way and may be performed in either hardware or  

software.  Current research into software-based attestation has explored the problem of 

static attestation, or verifying the software that the system loads at boot-time.  For many 

systems, knowing that the system’s initial state is valid is insufficient – verification that 

the system is still in a good state is needed later and without bringing the system offline or 

interrupting critical processes.  This thesis introduces a proof-of-concept method for 

performing attestation on real-time systems, named Dynamic Attestation of Run-Time 

Systems (DARTS).  DARTS was designed to be sufficiently customizable in order to 

enable attestation  without interfering with system operations.  DARTS also has the ability 

to perform attestation on systems built upon Von Neumann architecture using dynamic 

memory allocation.  A key contribution of this work is that the entire attestation process is 

performed wholly in software on a real-time system without impacting the operation of 

potentially critical processes. 
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A PROOF-OF-CONCEPT FOR SOFTWARE-ONLY ATTESTATION ON REAL-

TIME SYSTEMS USING VON NEUMANN ARCHITECTURE AND DYNAMIC 

MEMORY ALLOCATION 

 
1.  Introduction 

1.1 Background and Motivation 

In a computer age, where computers outnumber people and are used to coordinate 

and control various aspects of their lives, the ability to trust that a particular computer 

system has not been tampered with becomes increasingly essential.  Whether the system 

is medical equipment monitoring a patient on life support or the autopilot systems on a 

passenger airliner, malicious logic can quickly turn devices from asset to liability with 

catastrophic consequences. 

To attest is to affirm to be correct, true, or genuine.  Applied to software or 

executable code, attestation is the ability to affirm, or verify, that the software running on 

a system is what the user or administrator expects; nothing more and nothing less.  

Research into attestation has proven that methods performed solely in software can be 

used to ensure that the system is operating as expected, but such methods universally 

require that the system’s operation be interrupted, even if just temporarily, in order to 

perform the necessary validation (Seshadri et al., 2005). 

SoftWare-based ATTestation (SWATT) is one of the foundational works in 

software-based attestation, effectively proving that such attestation is possible [2].  

Unfortunately, for the algorithm to detect alterations to the code, the system must 

surrender control to SWATT for the duration of the attestation because any interruptions 
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in the execution of software-based attestation can grant malicious logic the ability to 

circumvent the attestation scheme and effectively hide itself.  In the case of SWATT in 

particular, the entire memory of the system that is to be verified is incorporated into the 

check, which means the downtime required for attestation would be noticeable and 

possibly disruptive. 

In real-time systems, such as critical infrastructure and vehicle control systems, 

the problem of attesting software becomes more complicated.  Bringing such systems 

offline, even for an instant, could have catastrophic consequences.  Dynamic Attestation 

of Real-Time Systems (DARTS) [3] is a proof-of-concept attestation method that seeks to 

explore the possibility of using software-based attestation methods at run-time on real-

time systems without impacting the operation of the systems.  Using this, it would be 

possible to verify that critical systems are operating as intended without the need for a 

service interruption. 

1.2 Problem Statement 

 As was demonstrated by the Aurora Generator Test [4] and Comprehensive 

Experimental Analyses of Automotive Attack Services [5], real-time systems such as 

critical infrastructure and vehicles with onboard computers are vulnerable to cyber 

incursions, with potentially catastrophic results.  Current methods of software attestation 

either require additional custom hardware or interruption to the system’s operation in 

order to execute, which could possibly cause system instability.  It is for this reason that 

Dynamic Attestation of Real-Time Systems (DARTS) was developed – a software 
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attestation scheme conducted purely in software that can run without interruption to the 

critical processes. 

1.3 Research Objectives /Hypotheses 

Using DARTS as a representative algorithm for software attestation, this research 

aims to confirm the hypothesis that software attestation is possible on real-time systems 

as well as systems built on a Von Neumann architecture with dynamic memory 

allocation.  In order to enable DARTS to emulate the behavior of existing attestation 

methods using available hardware, it was also necessary to account for the differences 

between Harvard and Von Neumann architecture as well as static versus dynamic 

memory allocation with respect to software attestation.  As these differences were 

evaluated, investigation into feasibility of performing software attestation in such 

environments was performed, leading to the hypothesis that software attestation is 

feasible on systems utilizing dynamic memory allocation and a Von Neumann 

architecture. 

1.4 Research Focus 

This research focuses on determining the feasibility of interleaving software-only 

attestation with real-time processes.  This includes a verification of timing deconfliction 

between the process and attestation, and assessing the impact of a reduction in the 

attestation scope on the security efficacy of attestation.  In order to implement software 

attestation on the available systems, DARTS has been coded to account for dynamic 

memory allocation as well as a Von Neumann hardware architecture, which further 

expand the types of systems software attestation is capable of being performed on. 
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1.5 Investigative Questions 

This research aims to answer several key questions.  The first of which is whether 

or not performing software-only attestation on a real-time system is even possible.  In the 

event that attestation is possible but must be reduced to remain non-disruptive, how many 

iterations of attestation must be performed in order to guarantee that alterations have been 

found?  Finally, what sort of special considerations or alterations must be made in order 

to accommodate for a Von Neumann architecture with dynamic memory allocation? 

1.6 Methodology 

 This proof-of-concept utilizes two PC-in-a-box systems configured with a real-

time Linux operating system as the testbed devices. This system configuration allows for 

nanosecond level scheduling and should effectively represent scheduling-based real-time 

systems.  Then, using a program designed to represent a real-time process and DARTS, 

the attestation program, to perform tests and demonstrate the feasibility of real-time 

attestation and assess the implications of altering the attestation space in order to create 

flexibility in the attestation scheme. 

1.7 Implications 

Successful demonstration that attestation can be dynamically performed on real-

time systems is the first step towards enabling system owners to incorporate a dynamic 

attestation scheme to guarantee confidence in the system during all phases of its 

execution.  Due to the increased reliance on computers to handle critical infrastructure, 

determining if such systems have been altered by an adversary could mean the difference, 

in some cases, between life and death. 
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1.8 Preview 

This thesis is structured as follows: Chapter 2 introduces related works that have 

established the software-based attestation paradigm, as well as alternate methods that 

require more significant modifications to the system.  An overview of the methodology 

used to conduct the experiments is presented in Chapter 3, including assumptions, system 

specifics, and an overview of DARTS functionality and limitations.  Chapter 4 contains 

an analysis of the results of the experiments, as well as potential implications.  Finally, 

Chapter 5 presents a summarized conclusion of the results and highlights of areas of 

interest for future work.  
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2. Literature Review 

2.1 Chapter Overview 

The purpose of this chapter is to introduce foundational works regarding software 

attestation and discuss their relevance to this research. 

2.2 Relevant Research 

 Prior to coding and experimentation, it was necessary to research previous forays 

into the realm of software attestation.  Software attestation research can generally be 

divided into two sub-categories: software-only attestation and hardware-assisted 

attestation.  As the focus of this thesis is to research software-only attestation, proposed 

methods that include specialized or additional hardware proved to be of little use because 

every attestation method where specialized hardware is used, the hardware is required to 

provide some form of localized security – to prevent malware from having access to 

either the attestation method or the nonce (number used once).  When using software-

only methods, such an approach is inapplicable.  In fact, one of the stated assumptions for 

software-only attestation is that the adversary has full access to the entire process. 

2.2.1 SWATT, Extensions, and Derivative Works 

The most influential works relating to software-only attestation stem from 

SoftWare-based ATTestation (SWATT) [2].  SWATT (and all derivative methods 

mentioned) is a client-server architecture where the verification system sends a nonce to 

the remote client that is to be verified.  The client then uses the nonce as a random seed to 

create a deterministic hash of the entire memory of the client within a pre-determined 

amount of time.  If either the hash is incorrect or the response is too late, the system is 
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flagged as compromised.  The benefit of this approach is that all of the client’s memory is 

evaluated, including any non-used space, which is filled with pseudo-random noise to 

prevent malware from concealing itself within the zeroes.  The obvious downside is that 

the entire system has to surrender control for the duration of the attestation, making a full 

system memory attestation costly. 

There have been papers such as On the Difficulty of Software-Based Attestation of 

Embedded Devices [6], in which the authors describe certain flaws in each of the 

algorithms discussed (primarily SWATT and ICE).  The authors used hardware that did 

not match the original designer’s systems in order to add the element of portability to the 

mix, which at least for SWATT did pose a possible area for concern.  Additionally, the 

original authors of SWATT published a refutation [7] that not only addresses the concerns 

brought up in [6] but produced references pointing to previous works either 

demonstrating that the concerns had been addressed or admitting to them directly.  The 

primary benefit of these papers was to illuminate the intricacies of software-based 

attestation with a back-and-forth discussion that introduced and addressed issues with the 

attestation methodology. 

Forgery-resistant Intrusion detection, Recovery, and Establishments of keys 

(FIRE) and Indisputable Code Execution (ICE) [8] is the next step in software attestation 

stemming from SWATT.  Rather than evaluating the entire memory contents of the 

system, ICE first attests its own code resident on the remote system, which then attests 

the program (or programs) desired.  FIRE, aside from appearing in the paper’s title and 

briefly in methodology, exists more as a supportive element to ICE.  This reduces the 

scope of attested memory from that of the entire system to only the selected program(s) 
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(or a subset of a single program).  ICE can greatly reduce the amount of attestation 

performed, making it far more suitable for larger systems and possibly even extended into 

the real-time domain. 

Pioneer [1], Secure Code Update by Attestation (SCUBA) [9], and SAKE: 

Software Attestation for Key Establishment in Sensor Networks [10], extend the idea of 

using ICE for software attestation.  Pioneer uses the same general format as ICE, with the 

key difference being that Pioneer utilizes SHA-1 rather than alternating ADDs and 

XORs.  To compensate for SHA-1’s collision resistance having been broken, the authors 

use a provided nonce to reduce the feasibility of pre-computation, as malware would have 

to pre-compute the hash independently for every nonce available.  SCUBA, on the other 

hand, demonstrates the use of software-based attestation as a method for verifying that 

updates had been performed properly on an untrusted system via an implementation of 

ICE.  In a similar manner to SCUBA, SAKE utilizes ICE  in order to implement a secure 

key exchange protocol despite the remote system being in an uncertain state. 

The work presented in [11] predominantly relies upon the SWATT evaluation and 

proof of concept but with altered code in order to show that it will function appropriately 

on vehicle systems.  Malicious alterations to the verification code would incur an 

estimated 13% overhead that would be detectable by the verification system.  The authors 

do not perform an in depth discussion of the actual results, leaving much to speculation.  

The primary benefit of this paper is that it displays the transferability of SWATT between 

platforms, demonstrating that the original proof of concept is not bound by a narrow 

scope of systems. 
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2.2.2 Alternative Software-based Methods 

A method specifically targeting inclusion of the stack into attestation is proposed 

in [12], wherein the system replaces the entire contents of memory with a deterministic 

pseudorandom number, which would greatly impact any ongoing operations on the 

system.  This allows the entire contents of the system’s memory to be attested, but 

completely precludes the possibility that this approach can be used on a real-time system 

as it effectively resets the system to startup configuration resulting in a loss of any data in 

use or that has been collected.  This technique is also used in [13], where the authors 

openly state that “Firmware attestation might not be suited for devices with harsh time 

constraints” due to the likelihood of it being time consuming for the device.  An idea that 

this paper rejected was the concept of searching through memory for data that resembles 

executable code – a concept that could prove quite useful in detecting malware that hides 

itself on the stack.  Unfortunately, no details were presented regarding this line of 

thought. 

Some groups have explored the possibility of performing system state verification 

at run-time.  [14] and [15] both focus on run-time verification of the system state.  The 

primary benefit to these two approaches is that they perform some degree of hardware 

verification in addition to  software, but at a cost.  Both methods’ verification process is 

focused on checking input / output validity on the target system – that is checking to see 

if the expected output is produced for a given input.  While this can be used to indicate 

hardware or software changes that affect system operation, they are not able to discover 

changes that seek to remain hidden.  Malware waiting for a trigger condition, for 

example, would not be caught by either method until the malware had already executed.  
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Additionally intelligent malware could return the expected output to the verifier while 

still carrying on with its nefarious purposes.  

2.2.3 Problems with Software Attestation Methods 

In A Generic Attack on Checksumming-Based Software Tamper Resistance [16], 

the authors implemented proof-of-concept versions of attacks on various operating 

systems and architectures and then tested to see if their modifications to the system were 

detected by a “representative checksumming tamper resistance algorithm”.  

Unfortunately, the authors never specified the capabilities that were built into the 

representative checksumming algorithm, greatly limiting the transferability of the results.  

The attack methods involve duplicate copies of the program code (one modified, one 

not), meaning that at least enough empty space is required to store the program code.  

While this may be viable in larger systems, it is problematic in small, embedded devices. 

Another paper that focused on the flaws in software attestation is Side Effects Are 

Not Sufficient to Authenticate Software [17], in which the authors assess the ability of 

different attestation methods.  Without access to the source code, as they repeatedly state, 

the accuracy of their results is questionable, at least with regards to Genuinity [18], the 

primary focus of their research.  In their assessment of SWATT, however, they list a few 

concerns about its ability to guarantee memory integrity but concur with the conclusion 

that SWATT, if used as intended, would result in malware detection with a very high 

degree of probability. 

2.2.4 Hardware Assisted Methods 

In A Minimalist Approach to Remote Attestation [19], the authors propose a 

generic approach to remote attestation, which differs from typical software attestation in 
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that it is meant to be performed over a network as opposed to being directly connected.  

This approach is not timing-based.  Rather, it relies on the creation of a secure attest 

function and statistics for the provided nonce to be integrated into the function, 

computed, and then returned with negligible chances of collision or guessing.  The 

method proposed is entirely time agnostic; therefore, it can be performed over a network 

without fear of the other network devices interfering with the attestation process.  In the 

end, this paper relies upon hardware support (exclusive access to the nonce) in order for 

the attestation to be effective. 

Alternatively, instead of simply relying on the system to verify itself while using 

possibly corrupted programming, solutions like Dynamic Integrity Measurement and 

Attestation [20] and New Results for Timing-Based Attestation [21] propose that a trusted 

platform module (TPM) be added to the system.  The TPM is essentially a co-processor 

with read-only memory containing the code that is used to attest the remainder of the 

system.  This presents the obvious benefit in that it can be guaranteed that the component 

performing the attestation has not been co-opted to function differently, assuming no 

changes have been made to the system’s hardware.  Unfortunately, this requires the 

installation of additional hardware into the system and increases the complexity of 

performing system upgrades while maintaining an attestable state.  

2.2.5 Attacks Against Attestation 

In TOCTOU, Traps, and Trusted Computing [22] the authors wrote code that 

demonstrated the Time of Check, Time of Use (TOCTOU) style attack by changing 

functions at run-time, rather than at boot-up, and then reverting the changes once the 

malicious tasks were complete.  Malware acting in this manner effectively defeats 
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attestation methods that only check either at boot-up or during a system interruption.  It is 

for this reason DARTS was created - the purpose of run-time attestation is to eliminate 

the disparity between the time of check and time of use referenced in the paper. 

2.3 Summary 

Research in the realm of software-based attestation has verified that attestation, in 

various forms, is possible and ranges from small embedded devices to larger systems.  

However, there has been little research into the possibility of implementing attestation 

into a running system without disruption to the system’s operations. 
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3.  Methodology 

3.1 Chapter Overview 

The purpose of this chapter is to present the process followed to conduct the 

experiments.  This starts with a description of the DARTS program, then outlines 

assumptions and limitations for the program as well as software attestation in general, 

states the criteria that will be used to measure success, and then introduces the system 

configuration used. 

3.2 Dynamic Attestation of Real-Time Systems (DARTS) 

In order to explore the possibility of performing dynamic (i.e., run-time) 

attestation on real-time systems, the ICE algorithm developed by Seshadri, et al., was 

extended to create DARTS.  ICE was chosen in order to capitalize on the ability to focus 

attestation on a single process without the need for additional hardware.  The process by 

which DARTS performs attestation is displayed in Figure 1.  Attestation begins with the 

verification server transmitting a randomly generated nonce to the client to be attested.  

At the same time, the verification server starts a timer.  When the nonce is received by 

the client, DARTS utilizes system calls to determine the memory addresses associated 

with the desired program.  DARTS then uses the nonce to seed a pseudo-random number 

generator to determine which memory addresses will be included in the hash and, using 

the nonce as the initial value for the hash, hashes the values of the selected addresses 

sequentially.  DARTS then uses the current hash value to re-seed the number generator to 

select the Target System Process memory addresses and incorporates the selected values 

into the hash.  Once all desired addresses have been included in the hash, DARTS 
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transmits the hash to the verification server which ensures that the hash is the expected 

value and it was received within the proper amount of time.  The hash used in DARTS is 

not intended or required to have strong cryptographic security properties; rather its 

primary function is to increase complexity required for an adversary to pre-compute the 

response that will be sent to the verification server.  Instead of cryptographically secure, 

the hash must be very efficient to allow for greater code coverage with minimal system 

impact.  Thus, DARTS incorporates the same methodology for hashing that is used by 

Seshadri et al. in ICE – that is, an alternating series of ADDs and XORs. 

 

Figure 1: Overview of DARTS process.  1) Server generates and transmits nonce; starts 
timer. 2) DARTS uses the nonce to select memory locations and hashes its own code.  3) 
DARTS uses current hash to select and include TSP memory locations in the hash. 4) 
DARTS transmits completed hash back to server 

 

When attesting the entire program and associated Dynamically Linked Libraries 

(DLLs) - in this case 2.1 MB - DARTS includes all memory addresses sequentially, using 
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the nonce as the initial value.  In other cases, where DARTS is only attesting a portion of 

the program’s memory, DARTS used a pseudo-random number generator seeded with the 

nonce value to determine the addresses to include in the hash.  This random approach 

makes it difficult for any code to hide itself.  Although not strictly guaranteed, but with a 

high degree of certainty, all memory locations will eventually be inspected.  

Alternatively, DARTS was configured to use a hybrid approach wherein the nonce is 

used as a random seed which determines a starting memory address to begin each 

iteration with all subsequent memory reads being linear.  Speculation is that this approach 

may improve caching performance by taking advantage of spatial locality. 

There are some previously demonstrated attestation techniques that have been 

consciously omitted from the design of DARTS.  For example, ICE integrates the address 

of the referenced memory in the hash in order to protect against attacks.  However, 

including this feature currently makes attestation infeasible in a system with dynamic 

memory allocation.  The result of this feature’s omission is that the DARTS algorithm 

can be defeated by sophisticated malware on systems with adequate excess memory 

space. However, DARTS significantly increases the cost and complexity for the attacker, 

as well as the probability of detection. 

3.3 Assumptions and Limitations 

First, it is assumed that all layers of the system stack have not been tampered 

with.  This includes the operating system, kernel, firmware, and hardware.  As any layer 

in the system stack is entirely dependent upon and can be fooled by the layers beneath it, 

such modifications defeat application-layer attestation.  The scope of software attestation 
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can be expanded to encompass the operating system (OS) and kernel, which would 

enable this assumption to no longer apply to OS and kernel code, but this is beyond the 

scope of this thesis.  Additionally, other attestation schemes can be performed before run-

time to verify that the system started in a tamper-free state and since hardware and 

firmware modifications typically cannot be performed without impact to the system, the 

likelihood of hardware or firmware being altered while the system is in operation is 

minimal. 

Second, the DARTS code is assumed to be fully optimized.  Software-based 

attestation relies upon fully optimized code in order to ensure that malicious code cannot 

use a faster implementation to compute a response with enough extra computer cycles to 

hide or move code.  Due to the fact that DARTS is a representative expansion of software 

attestation, going through the effort to demonstrably optimize the code is of minimal 

academic or practical value. 

The third assumption is a tenet of software attestation and is closely related to the 

second assumption: there is no other, more powerful, untrusted computer on the network.  

This assumption is necessary because if both machines were compromised, it would be 

possible for the target to act as a relay and offload the attestation process to the more 

powerful system.  The more powerful system would then complete the attestation more 

rapidly than the target and could therefore allow the compromised system to return the 

correct reply within the allotted time limit. 

The fourth and final assumption is that the system’s highest priority is available to 

DARTS.  In order for attestation to work, the method must be atomic – that is non-

interruptible.  Any context switch, where the attesting method loses control over the 
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processor and its memory is an opportunity for malware to hijack the method and 

produce false results. 

3.4 Evaluation of Success 

 In order to evaluate whether DARTS has achieved its objectives, it is necessary to 

state what criteria will be used to distinguish between success and failure.  To determine 

that attestation can be performed at run-time on a real-time system, the target system 

process’ start time and execution time must remain within one standard deviation of 

values collected without ongoing attestation.  The determination of whether or not 

software attestation is possible on systems using a Von Neumann architecture and 

dynamic memory allocation will be based on whether or not DARTS is able to perform 

attestation, regardless of impact, on systems that use dynamic memory allocation and 

Von Neumann architecture. 

3.5 System Configuration and Setup 

This proof-of-concept is implemented in two single-core systems-in-a-box 

systems running Ubuntu 14.04 and the Real-Time Linux patch, version 4.4.12-rt19.  This 

system configuration allows for nanosecond-level real-time scheduling based on priority.  

In order to utilize timing in a distributed setup, it was also necessary to establish a 

Network Time Protocol (NTP) server on one of the systems, with the second system 

operating as an NTP client. 

The function of the program being attested is not of particular concern; it is 

representative of a real-time process that cannot be allowed to sustain disruption.  A 

simple real-time program called Target System Process (TSP) was created that shuffles 
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values among four different variables and stores start and stop timestamps in an array 

(any activity that could not be optimized away by the compiler would suffice).  In order 

to facilitate this program’s ability to simulate a critical real-time process,  its priority was 

set one below the maximum level within Real-Time Linux, leaving the highest priority 

for DARTS to ensure atomicity. 

3.5.1 Memory Parsing 

Software attestation is generally best applied in a Harvard architecture, in which 

data is separated from executable code, and on systems with static memory allocation.  

Because Linux systems are built upon a Von Neumann architecture with dynamic 

memory allocation, additional steps were necessary in order to accommodate both the 

presence of data in the attestation space and dynamically addressed execution code.  A 

key requirement was to identify which addresses allocated to TSP contained data.  To 

satisfy this requirement, it was assumed that all addresses which were volatile (changed 

during process execution) contained data.  Another key requirement was to identify the 

stack and exclude it from the hashing algorithm because the stack is designed to change 

during runtime and would make knowing the program’s exact state, including all 

variables, a necessity for attestation.  Since most real-time systems gather data that 

cannot be predicted ahead of time, this type of knowledge is not possible.  In order to 

identify changes from one run to the next, DARTS was modified to print all intermediate 

values to a file and initiated a series of trials using a single, static nonce against a single, 

continuous instance of TSP. As a result, volatile values were able to be identified by 

looking for the deviations from previous trials.  In order to ensure consistent performance 

in spite of the system’s dynamic addressing scheme, this address’s relative position 
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within memory (e.g., 990th output) was recorded rather than the address itself and 

DARTS was programmed to not integrate that line into the hash. 

Due to the dynamic addressing scheme employed by most modern operating 

systems, including the test bed, it was then necessary to end the instance of TSP and start 

a new instance in order to evaluate consistency of output.  As expected, the final hash 

values were not the same.  Removal of volatile values had helped establish consistency 

within an instance of TSP, but it is speculated that each time the program was initialized, 

internal references and jumps would be given different offsets to account for the dynamic 

memory allocation.  In order to establish initial functionality, these memory sections were 

identified in the same manner used to identify the volatile sections and then excluded 

from the hash.  Addresses excluded due to dynamic memory allocation account for 0.3% 

of the total code.  A more permanent and thorough solution will be to have DARTS 

deterministically compute the changes in the offset and account for it when attesting the 

program, but research into this area is left to future work.  Once completed, this would 

allow for attestation of a dynamic system without excluding sections of code. 

3.5.2 Nonce Generation 

Deterministically generated nonce values were used to verify that DARTS 

produces consistent results by seeding the random number generator on the server with a 

pre-selected value and performing a series of 1,000 attestations against the client to 

generate a table of nonces and their associated hash responses.  These attestations, or 

trials, were then re-accomplished using the same seed value, and the second set of results 

was compared with those from the first sequence.  In order to test the program’s ability to 

detect changes, the code was then altered in a variety of ways and the trials were run 
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again while verifying that the new responses were different than the un-altered code.  

This confirmed that when run at full capacity, DARTS detects even miniscule changes 

within either its own code or the target program’s code and is not affected by dynamic 

memory allocation.  To reduce the overhead involved with attestation, the portion of 

DARTS code attested on every round was reduced to 131 KB, which represents 1/16 of 

the attestation client code.  For the remainder of this thesis, when sizes of attestation are 

mentioned, they refer solely to the amount of TSP code that is being attested since the 

amount of DARTS code remains constant.  The rate at which DARTS is able to 

successfully identify alterations to its code is the subject of future work. 

In scheduler-based real-time systems, the system’s ability to operate consistently 

without interruption can be critical, including loss of life, for example in medical 

applications or national security.  Since DARTS must run on the real-time system in 

order to determine if the system has been altered, this requires adding a new process into 

the schedule.  To evaluate whether attestation could execute on the target system without 

interfering with the critical processes, the first step was to assess the program’s runtime 

to determine if it was possible for attestation and TSP to share time on the system’s 

processor.  These runtimes are displayed in Figure 2.  With 2.1 MB attestation requiring 

380 milliseconds, the expectation was that DARTS would be able to run on an 

operational system without impacting system functionality.  Reducing the amount of 

attestation performed had a notable decrease in execution time for DARTS, but as the 

attestation was reduced to below 131 kilobytes, the amount of time saved decreases by 

less than 10% whereas amount of addresses being attested is decreased by 50%, meaning 

the amount of data attested was halved with minimal time savings.   This is a result of the 



21 

decrease in the number of addresses attested by DARTS with no change to the overhead 

required for DARTS to run, increasing the percentage of total runtime that is dedicated to 

necessary, but non-productive, code execution. 

 

Figure 2: A comparison of DARTS execution times, varying in amount of TSP code 
attested 

 

3.6 Threats and Attack Methods 

 Since the intent of software attestation is to verify that a program running on the 

remote system has not been compromised, it is necessary to evaluate at a high-level the 

forms of attacks that can be performed against a system and how DARTS in particular 

responds to these attacks.  Though it is still possible to successfully compromise a 
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DARTS system, it requires more intricate knowledge of the system and the options 

available to “hack” are greatly reduced. 

 It should be noted that DARTS does not integrate the stack into the hash, nor does 

it currently provide any sort of verification of the stack’s contents at this time.  As a 

result, an adversary whose malware exists solely on the stack would elude detection by 

DARTS. 

 In the case of either simple corruption or unsophisticated malware (i.e., malware 

that does not try to evade detection), software attestation’s function can be simplified to 

reduce the program’s time while maintaining a high assurance that errors will be caught.  

In such a case, the random nature of attestation is superfluous, and can be removed.  This 

results in a linear (though possibly disjointed) method of attestation that starts at the 

beginning and continues attestation until either completion or until a set number of 

addresses have been read (to reduce the amount of time each iteration takes).  The next 

attestation cycle would simply start where the previous cycle ended.  This approach 

benefits from performance bonuses as a result of caching, which provides increased 

speed.  Additionally, it is guaranteed that the entire code space will be attested in n 

cycles, where 1/n is the amount of program data attested. 

 In the event of an infection from intelligent malware, however, this simple 

strategy might not be as successful if the malware could determine which sections of 

code would be attested next because it could simply move to a different section that 

would not be attested.  Because of this, random address selection is essential.  Using the 

nonce value as a random seed, the attestation program selects addresses at random to 

attest.  Since the sequence is determined by the nonce, the transmission of which has 
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already started a timer, the malware would not have adequate time to hide.  The use of 

random addresses is able to defeat intelligent malware, but results in decreased code 

coverage performance.  Without careful deconfliction of target addresses between 

attestation cycles, addresses could be read inefficiently, with some being read several 

times before others are attested at all.  This produces gaps in coverage that could enable 

lucky malware or corrupt data to remain undetected longer than is desired.  The best case 

scenario for full program space attestation remains at n cycles, but as the address space 

grows, the probability of reaching this best case diminishes in a manner consistent with 

the birthday problem [23].  Additionally, this type of approach does not benefit from 

caching because each subsequent address has no deterministic relation to its predecessor. 

One way to alleviate the caching issue is to use a random generator to select a 

new starting point every cycle, however subsequent addresses would still be read linearly.  

This allows the attestation scheme to benefit from caching and also helps alleviate the 

uneven read of addresses while retaining the unpredictability of using a random start 

address.  Due to the atomic nature of the attestation process, the linear nature of the 

address reads is of no concern because any malicious behavior to evade would require 

interruption of the attestation in order to execute, which would introduce a detectable 

change in timing, and thus be ineffective. 

One method that can be employed by malware to successfully evade DARTS in 

its current form would be to clone both DARTS and the target program in memory.  The 

malware would then run the attestation normally against the preserved clones while the 

malware manipulates and alters the actual running copies of the programs.  This requires 

the system to have enough memory for two copies of each program.  ICE, by Seshadri, et 
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al., addresses this by including both the program counter and memory addresses loaded 

directly from the CPU registers, which is a feature that could be built into DARTS 

assuming the issue of dynamic memory allocation can be addressed (see future work). 

3.7 Summary 

As run in the experiments, DARTS is an attestation protocol designed to attest a 

program running on a real-time Linux system with the intent of evaluating the feasibility 

of running attestation on a) a real-time system and b) a system with dynamic memory 

allocation of a Von Neumann architecture.  In short, DARTS is designed to increase an 

adversary’s cost and complexity when attacking a specific system. 
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4.  Analysis and Results 

4.1 Chapter Overview 

This chapter discusses the results of the experiments as well as their implications.  

4.2 Results of Simulation Timing 

 The first step to determine whether or not attestation has any impact on the 

operation of the system was to evaluate TSP’s performance without attestation.  TSP was 

scheduled to begin exactly at 0 ms, and Figure 3 displays the actual start times for TSP.  

The average delay between scheduled and actual start time was 12.003 µs with a standard 

deviation of 1.5 µs.  Cause of this delay is suspected to be context switching (i.e., loading 

of the program into cache).  Total execution time for TSP remained consistent at 1.2 µs. 

 

Figure 3:  TSP start time delay while unattested.  Standard deviation:  1.5 µs; average 
start time delay:  12 µs. 
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that attestation had on the program’s runtime.  The start time of DARTS was then 

incremented by 1 millisecond per trial starting at 0 milliseconds, forming something of a 

convolution between start times and TSP delays, and displayed in Figure 4.  As expected, 

this exercise revealed the existence of certain time periods where attestation had a 

negative impact on system operations – specifically when the offset for DARTS was 

between 128 ms and 500 ms.  As the start time for DARTS was delayed incrementally 

during this period, the observed disruption became increasingly severe until it peaked at 

the full runtime for DARTS.  This was a result of the decreasing amount of time between 

the start time of DARTS and the scheduled start time for TSP.  Since the system utilized 

a single-core processor and the scheduler, as configured for this experiment, will not 

interrupt attestation for any reason, TSP had to wait for DARTS to complete before it was 

allowed to execute.  In real-time systems, these situations must be explicitly avoided.  

During these trials, attention was paid to the runtime of TSP as well as start time delay in 

order to make sure that attestation did not cause the program’s runtime to increase 

unexpectedly. 
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Figure 4: Convolution of TSP’s runtime disruption.  As DARTS’ start times approach 
500 ms, the amount of delay suffered by TSP increased.  Attestation requests after this 
period suffered no visible delay due to TSP’s task being accomplished prior to attestation. 
 

4.2.1 Process Deconfliction 

At first glance, Figure 4 suggests that even attestation of 2.1 MB can be run on 

systems without impacting critical processes.  When focusing in on one such region 

where DARTS appears to have no impact, such as when the start time offset was between 

520 and 770 ms, it becomes evident that there was some delay incurred by TSP.  As 

Figure 5 shows, TSP start times during this period remained relatively consistent around 

the 15 µs mark, but this was still 2 standard deviations (3 µs) higher than the average of 

12 µs for non-attested TSP, which does not meet the requirements to be non-disruptive.  

Considering this was the period of least disruption caused by the 2.1 MB attestation, this 

reveals that in order for attestation of 2.1 MB to be feasible during any period, 
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modifications are required.  All other attestation sizes resulted in delays nearly 

indistinguishable from the 2.1 MB attestation, as can be seen in Figure 6.  The fact that 

all four attestation sizes, regardless of total runtime, had the same impact on TSP’s timing 

during this period suggests that the interference was an indirect result rather than direct 

impact (i.e. partial flushing of TSP instructions/data from the cache as opposed to 

monopolizing CPU cycles).  

 

Figure 5: TSP start time as affected by 2.1 MB attestation when attestation was using a 
520 ms to 770 ms offset.  Baseline represents the average delay for un-attested TSP. 
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Figure 6: TSP start time disruption – comparison of TSP’s delay as affected by 2.1 MB, 
1.05 MB, 525 KB, and 262 KB attestations with the average delay for TSP. 
 

Considering that the peak run time of DARTS was equal to DARTS’ total runtime 

and occurred when DARTS had a 500 ms execution offset, all later offsets for DARTS 

resulted in the attestation occurring after TSP completed its time-critical task.  Coupled 

with the fact that all attestation sizes incurred the same delay during this time period, this 

suggests that the delay suffered by TSP (roughly 3 µs) was primarily the result of TSP’s 

program code being replaced in cache, thus incurring cache miss penalties.  When 

attesting a real-time program running alone on a system, it was not expected to have to 

account for cache miss penalties incurred by the intrusive flushing of the cache that 

occurred as a result of DARTS.  On a system where the interval between trials (in this 

case, 1 second) is all that matters, the cache miss delays would not have a negative 

impact because all iterations would suffer comparable delay and result in the interval not 

being affected. 
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4.2.2 Adjusted TSP Start Time 

In other systems where the execution time itself is essential, such as when the 

system is part of a networked infrastructure requiring precise timing, this delay becomes 

unacceptable.  This fostered the idea that the scheduled runtime for TSP could be altered 

in anticipation of the cache miss delay.  If it is necessary for a system to begin its 

execution at exactly 500 ms, and as a result of attestation requires 5 µs longer to 

initialize, then scheduling the program to run 5 µs earlier should at least reduce this 

delay.  Figure 7 shows TSP’s average, unattested start time compared with the delay 

incurred by 2.1 MB attestation if TSP’s start time were rescheduled 5 µs earlier to 

account for the newly introduced cache miss penalty.  This resulted in a reduction of the 

delay to within 1 standard deviation of TSP’s average runtime. 

 

Figure 7: TSP timing disruption comparison – standard TSP delay compared with 2.1 
MB attestation trials against an adjusted TSP start time. 
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The intent was to minimize or eliminate the impact on TSP’s execution time, so 

the offset with the lowest interference represented from the previous trials (540 ms) was 

selected.  DARTS was then configured to use this new offset for another 1,000 trials in 

conjunction with TSP’s 5 µs early start time.  The results were then compared to the 

TSP’s start time without attestation and displayed in Figure 8.  Not only did the delay 

incurred by TSP remain within 1 standard deviation, but was far more consistent 

throughout the trials than TSP when it was not being attested.  With a standard deviation 

of 0.5 µs, the new standard deviation was 1/3 that of TSP when running alone, meaning 

that not only would attestation ensure proper operation of the system, but there are some 

cases where the system’s operational stability would actually benefit. 

 

Figure 8: Visualization of the delay caused by DARTS running at an offset of 540 ms 
with TSP scheduled 5 µs early compared to unattested TSP. 
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direct interference from DARTS.  When TSP runs on the system without attestation or 

other programs, the cache hit rate appears to be non-uniform, which resulted in a 

fluctuation in start times.  When attestation is introduced, however, it is almost 

guaranteed that TSP has to completely reload its code into the cache resulting in a more 

consistent initialization sequence, which in turn results in lower start time variation, albeit 

with greater total execution time. 

4.3 Attestation Coverage and Effectiveness 

In order to fully assess the usability of attestation, it is also necessary to evaluate 

how effective attestation, in particular DARTS, is when the volume of attested data is 

reduced to accommodate for shorter execution periods.  The success rate of reduced-

volume attestations depends greatly on the method used to determine which addresses to  

inspect, which was briefly discussed earlier in Section 3.5.  A representative sample of 

1,024 address spaces was selected for this evaluation in order to keep the data processing 

at a manageable size.  Figure 9 displays a comparison of the coverage provided by the 

three primary methods.  This graph is consistent with statistical analysis for both linear 

reads (where no statistical analysis is required) and true random, where the birthday 

problem’s collision equation1, 𝐸𝐸 =  ∑ 𝑛𝑛 − 𝑡𝑡 + 𝑡𝑡 �𝑡𝑡−1
𝑡𝑡
�
𝑛𝑛

𝑛𝑛
𝑘𝑘=1 , accurately predicts the 

number of collisions that are expected.  The values resulting from Equation 1 are 

compared with the experimentally determined values and displayed in Table 1.  Each 

collision results in a duplicate read of an address, reducing the total number of unique 

                                                 
1 E is the expected number of collisions, n is the number of addresses being read on a given pass, and t is  
the total number of available addresses. 
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addresses incorporated and therefore reducing the total amount of memory attested on a 

given trial.  

 

Figure 9: A comparison of the coverage provided by different methods for integrating 
randomness into attestation. 
 
Table 1: Comparison between predicted and actual values for random address selection. 

Number of Trials Statistical Prediction Experimentally Determined 

1 227 unique / 29 duplicate 228 unique / 28 duplicate 

4 648 unique / 376 duplicate 652 unique / 372 duplicate 

20 1018 unique / 4102 
duplicate 1015 unique / 4105 duplicate 

 

The first method that could be utilized if intelligent malware is not a concern is 

also the most effective – a simple linear approach to attesting the address space.  The 



34 

number of trials required to guarantee that any given address will be attested is equal to n, 

where 1/n is the fraction of addresses being attested.  This method also benefits from 

cache pre-loading to further reduce the speed required to perform attestation.   

 The counter to linear attestation is a completely random scheme.  Using a random 

approach, DARTS selects each successive address randomly, with possible repetition.  

Though it comes at a cost, random address selection makes it possible to detect intelligent 

malware that might be able to sense an impending attestation and relocate itself.  As each 

memory address is independently read from one another, caching becomes more of a 

liability than a benefit.  Additionally, due its randomness, the average number of trials 

required for a given location to be read is the largest out of the three methods.  Using the 

equation to determine the probability an event will occur2, 𝑃𝑃 = 1 −  �𝑡𝑡−1
𝑡𝑡
�
𝑛𝑛

, determined 

that using a random setting results in only a 22.1% chance for each address being read, 

rather than the expected 25% when ¼ of the address space is attested.  Using this 

probability (22.1%) in the equation for infinite series3, 𝐶𝐶 = 𝑃𝑃
1−𝑃𝑃

∗  ∑ 𝑛𝑛 (1 − 𝑃𝑃)𝑛𝑛20
𝑛𝑛=1 , 

revealed that the average number of trials required for all addresses to be attested was 

4.35 over the course of 20 trials (increasing to 4.52 for an infinite series), compared to 4 

for straight linear.  Figure 10 displays the actual memory reads from a representative 

sample using this full random method. 

 

                                                 
2 P is the probability that an address will be read, t is the total number of addresses available, n is the 
number of addresses read per cycle 
 
3 C is the expected number of cycles for a given address to be read, P is the probability that any given 
address will be read, n is the number of rounds of attestation / iterations through the equation 
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Figure 10: Memory locations read after 1, 4, and 20 trials using a full-random discovery 
scheme. 

 

 Alternatively, a hybrid approach could be used that would combine the benefits of 

linear and random memory reads.  In this hybrid approach, DARTS would use the nonce 

to generate a random address to read.  From this point on, the address reads would be 

linear.  This allows DARTS to benefit from the caching pre-fetch and eliminates the need 

to generate a new random number for each address to be read while still allowing the 

program to capture intelligent malware via unpredictability.  The unpredictability comes 

from the nonce that is used to generate the random starting location and the fact that a 

timer has already begun on the remote server before the nonce even arrives at the client 

machine to be verified, leaving malware no time to relocate itself to a safe location.  

While the random nature does result in uncertainty, the equation for an infinite series 

maintains that the average number of cycles required to read a given address is 4.  Figure 

11 displays the actual memory reads from a representative sample using this hybrid 

method.  It should be noted that the same hit rate could be achieved with true random if 

the random generation did not allow for duplicate addresses.  However, doing this would 
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increase the time required for the process to run without producing any meaningful 

benefit. 

 

Figure 11: Memory locations read after 1, 4, and 20 trials using a hybrid approach 
(random start location selection followed by linear reads). 

 

4.4 Performing Attestation on a Dynamically Addressed System 

 As was mentioned in Chapter 3, it was necessary to identify and exclude certain 

memory offsets in order to enable consistency between all instances of the TSP.  While 

this enables DARTS to attest and return consistent results, it also leaves certain addresses 

unattested, and as such would provide an easy opportunity for malware to evade 

detection.  To alleviate this vulnerability, analysis has been performed on the changes 

that occur between iterations of the target program in order to identify patterns usable by 

DARTS to account for changes resulting from dynamic addressing. 

 Using DARTS’ ability to locate the sections of code as they are loaded in 

memory, four contiguous blocks of data were identified.  DARTS was then configured to 
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sake of this analysis, only one block of TSP’s code was analyzed during this stage.  This 

was done to keep the data set at a size conducive to the initial evaluation. 

 Analysis of the values from this block revealed that the contents of only 15 out of 

1,024 memory locations change because of the dynamic addressing.  Further evaluation 

of the values within these 15 address spaces has revealed that the 2nd through 11th altered 

locations retain a constant relation to the first (for example: the 2nd location is always 

equal to the first, the third is always the first plus 1,024, etc.).  Such consistency supports 

the supposition that the changes in values is due to variations in jump offsets as a result 

of dynamic memory allocation not maintaining relative locality for the code between 

iterations. 

 Using these results, it is possible to program DARTS to account for some of the 

dynamic shift between iterations.  The result of this is that certain addresses do not have 

to be skipped simply because they change between instances of TSP execution – DARTS 

is able to capture the value from the first memory location and subtract it from the values 

within locations 2 through 11, incorporating the remainder into the hash.  This provides 

greater assurance that the values have not been altered. 

 The difficulty for malware to circumvent this will be greatly increased if the value 

of the 1st location is able to be determined prior to the memory read because DARTS’ 

ability to account for the change in values would not depend on any data values that 

might have been altered by the malware.  Analysis of the binary values for the 1st location 

reveal that the first 12 bits as well as the last 12 bits are consistent across all iterations of 

the program.  Because of this, the middle byte holds the key to enabling DARTS to 
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identify the expected value independent of the actual value.  As of yet, no discernable 

pattern has been identified with regards to the number’s selection. 

4.5 Investigative Questions Answered 

With regards to the investigative questions, DARTS demonstrated the ability to 

successfully perform software-only attestation on a real-time system.  In the event that 

the amount of attested memory has to be altered to accommodate system requirements, 

the number of trials required to return to a given memory location is, on average, 

inversely proportional to the fraction of memory space being attested (i.e., if ¼ of the 

memory was attested, then it would take an average of 4 trials to attest every address).  

This was statistically determined and experimentally verified.  This does not hold for 

methods that allows duplicate reads of the same address within the same attestation cycle.  

The performed experiments also suggest that programming software attestation to 

accommodate for dynamic memory allocation is possible, though further work is required 

to enable DARTS to anticipate all values based on the memory addresses. 

4.6 Summary 

Experiments have demonstrated that real-time attestation is possible as long as 

there is a sufficiently large period of time on the system where the processor is free from 

critical processes.  If caching is utilized on the system, the system owner might need to 

account for newly introduce cache miss penalties to ensure timing remains consistent for 

networked services, but the interval will remain consistent. 
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5.  Conclusions and Recommendations 

5.1 Chapter Overview 

This chapter discusses the conclusions and implications of the research as well as 

recommendations for future works. 

5.2 Conclusions of Research 

Through this initial proof-of-concept series of experiments, it was shown that 

real-time software attestation is possible, at least in some situations.  As suspected when 

starting these experiments, deconflicting the run times for the critical process and the 

attestation program is necessary, but there is more to run-time attestation than this.  A key 

side effect of running attestation on a system with limited tasks is that the cache, which 

would otherwise maintain at least some data for the critical process, results in more cache 

miss penalties.  In systems where the scheduling of the critical process can be altered, the 

system designers can schedule the critical system process to execute earlier to offset the 

inevitable delay, thus maintaining system integrity. 

An interesting byproduct of attestation was that the standard deviation of the 

critical process’ start time delay was reduced by 2/3.  Though this might appear counter-

intuitive, having the cache flushed between each iteration greatly reduces the 

inconsistency presented by general computer functions’ impact on the cache.  The end 

result of this is that the addition of attestation both ensures proper operation of the system 

and enhances the consistency of the critical process.  It is understood that this might not 

always be the case. 
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5.3 Significance of Research 

This proof of concept demonstrated that systems can be attested without bringing 

them offline.  Whereas it has previously been determined that attestation through 

software-only means is possible, previous attestation methods require interruption of the 

system’s operation.  Critical infrastructure systems, such as power, gas, and water 

treatment, as well as sensors aboard aircraft, to name a few systems, do not handle 

interruptions well, providing limited opportunity for attestation.  DARTS enables 

ongoing attestation of such systems, further reducing the impact of data corruption or 

adversary intrusions, provided that the system has resources capable of accommodating 

attestation. 

Additionally, altering the amount of data that is attested during each iteration of 

the attestation program allows for greater flexibility and customizability to fill a greater 

variety of roles.  The tradeoff between faster runtimes and more complete attestation 

creates a sliding scale that can be used to tune attestation to the needs of the system.  If 

the urgency of malware detection is low, then attestation could be scaled back to reduce 

resource costs while allowing for probable detection of malware within a time limit 

determined by the system’s owner.  On the opposite end, if malware must be detected 

nearly instantly, the amount of attested data can be increased to the maximum amount 

while remaining non-interferent with the system. 

5.4 Recommendations for Future Research 

At this time, the research into performing software attestation on a dynamically 

addressed system remains incomplete.  Although this thesis was able to deterministically 
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predict and therefore account for some memory contents altered by dynamic allocation, 

not all memory spaces were able to be evaluated.  Further analysis is needed in order to 

completely enable DARTS to account for the dynamically altered values.   Additionally, 

as DARTS does not incorporate the memory location’s address into the hash as ICE [8] 

does, DARTS has no defense against intelligent malware that creates an un-altered copy 

to use for attestation.  Adapting a similar solution to DARTS, would greatly increase an 

adversary’s cost to defeat software attestation on dynamically addressed systems. 

Due to the exclusion of volatile memory addresses from the hash, the algorithm 

remains imperfect.  This is partially a result of not knowing the exact values to expect in 

a real-time system.  Another aspect of future work that should be investigated is to 

evaluate the volatile address spaces (the stack in particular).  By evaluating the contents 

of the stack for style rather than exact value (e.g., if an integer is expected in a particular 

location relative to the bottom of the stack, is that what is found?).  This would enable the 

program to identify malware that resides on the stack. 

Another experimental alteration that could be incorporated is the use of dual and 

triple nonces.  Using separately computed values would vastly increase the difficulty in 

pre-computing hash values.  The first would be an initialization for the hash itself, while 

the second would be used as the random seed in determining sequence of memory reads, 

and the third value would be used to alter the sequence of ADD and XOR used to 

generate the hash.  Keeping each nonce a 4-byte integer, this would increase the required 

size of a pre-computed table from 32 Gigabytes to 1,048,576 Yottabytes (1 x 1018 

Terabytes), if using the minimum 16 bytes per entry with no formatting; in other words, 

impossible with current technology. 
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Current software attestation methods rely upon the atomicity of attestation to 

ensure that malware was not able take control of the processor and produce false results.  

However, should a conflict arise between ongoing attestation and the critical process that 

is being attested, it is likely necessary that attestation must be pre-empted by the critical 

process to avoid system failure.  This would result in a correct response, but invalid 

response time from the client and therefore the client would be deemed compromised.  

Investigation into the feasibility of allowing occasional delayed responses from the client 

could not only be used to guarantee the stability of a real-time system during attestation, 

but also would allow for interrupt-based real-time systems to benefit as well. 

5.5 Summary 

Dynamic attestation of real-time systems is possible, and alterations to the amount 

of data attested allow attestation to be more closely tailored to the needs of the system.  

Attestation on systems with dynamic memory allocation looks promising, as values can 

be deterministically anticipated and accounted for, but requires further research before it 

reaches operational capability. 
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Appendix 

Appendix A:  TSP Code 
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Appendix B: DARTS Code Excerpts 
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Appendix C:  Sample Memory Map of TSP 

 Color-coded to highlight contiguous blocks of memory allocation. 

08048000-08049000  r-xp  00000000 08:01 3023319     /home/…/TSP 
08049000-0804a000  r--p  00000000 08:01 3023319     /home/…/TSP 
0804a000-0804b000  rw-p  00001000 08:01 3023319     /home/…/TSP 
08fe3000-09004000  rw-p  00000000 00:00 0           [heap] 
b75dc000-b75dd000  rw-p  00000000 00:00 0  
b75dd000-b7785000  r-xp  00000000 08:01 8132908     /lib/i386-linux-gnu/libc-2.19.so 
b7785000-b7786000  ---p  001a8000 08:01 8132908     /lib/i386-linux-gnu/libc-2.19.so 
b7786000-b7788000  r--p  001a8000 08:01 8132908     /lib/i386-linux-gnu/libc-2.19.so 
b7788000-b7789000  rw-p  001aa000 08:01 8132908     /lib/i386-linux-gnu/libc-2.19.so 
b7789000-b778c000  rw-p  00000000 00:00 0  
b779e000-b77a2000  rw-p  00000000 00:00 0  
b77a2000-b77a4000  r--p  00000000 00:00 0           [vvar] 
b77a4000-b77a6000  r-xp  00000000 00:00 0           [vdso] 
b77a6000-b77c6000  r-xp  00000000 08:01 8132901     /lib/i386-linux-gnu/ld-2.19.so 
b77c6000-b77c7000  r--p  0001f000 08:01 8132901     /lib/i386-linux-gnu/ld-2.19.so 
b77c7000-b77c8000  rw-p  00020000 08:01 8132901     /lib/i386-linux-gnu/ld-2.19.so 
bfc50000-bfc71000  rw-p  00000000 00:00 0           [stack] 
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